Cascade Control System for Two Axes Gimbal System with Mass Unbalance

نویسندگان

  • Maher Abdo
  • Ali Reza Toloei
  • Ahmad Reza Vali
  • Mohammad Reza Arvan
چکیده

the application of inertial stabilization system is to stabilize the sensor’s line of sight toward a target by isolating the sensor from the disturbances induced by the operating environment. The aim of this paper is to present two axes gimbal system. The equations of gimbals motion are derived using Lagrange equation considering the base angular motion and mass unbalance. The stabilization loop is constructed by identifying its components, then the traditional and cascade loops are defined. The overall control system is built using the cross coupling unit and simulated in MATLAB for the traditional and cascade control loops. A comparison study is carried out to investigate the gimbal system performance under different operational conditions. The simulation results prove the efficiency of the proposed cascade control which offers a better response than the traditional one, and improves further the transient and the steady-state response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling, Control and Simulation of Cascade Control Servo System for one Axis Gimbal Mechanism

The gimbal stabilization mechanism is used to provide the stability to an object mounted on the gimbal by isolating it from the base angular motion and vibration. The purpose of this paper is to present a model of control servo system for one axis gimbal mechanism using a cascade PID controller. The gimbal torque relationships are derived by taking into consideration the base angular motion. Th...

متن کامل

Design of Generalized Predictive Control for the Stabilizing Loop from a two-axis Gimbal Seeker, Considering Cross-Coupling in Between two Channels

In this research, Generalized Predictivecontrol (GPC) is proposed for the control of a stabilizing loop from a two axis gimbal seeker. In fact, there are some views about using GPC type controller which are two folds. First, it drives the stabilization loops that are made by a DC motor, Rate Gyro, inertia and cross coupling unit in between two channels using the predictive model type controller...

متن کامل

Effects of Flight Dynamics on Performance of One Axis Gimbal System, Considering Disturbance Torques

The gimbal stabilization mechanism system is used to provide the stability to an object mounted on the gimbal by isolating it from the base angular motion and vibration. In this paper the model of one axis gimbal system with dynamics flying object is introduced. The gimbal torque relationships are obtained using Newton’s second law equation on the assumption that gimbal is rigid body. The syste...

متن کامل

Fuzzy PD Cascade Controller Design for Ball and Beam System Based on an Improved ARO Technique

The ball and beam system is one of the most popular laboratory setups for control education. In this paper, we design a fuzzy PD cascade controller for a ball and beam system using Asexual Reproduction Optimization (ARO) technique. The ball & beam system consists of a servo motor, a grooved beam, and a rolling ball. This system utilizes a servo motor to control ball’s position on the beam. Chan...

متن کامل

Vision Based Neuro-Fuzzy Controller for a Two Axes Gimbal System with Small UAV

This paper presents the development of a vision-based neuro-fuzzy controller for a two axes gimbal system mounted on a small Unmanned Aerial Vehicle (UAV). The controller uses vision-based object detection as input and generates pan and tilt motion and velocity commands for the gimbal in order to keep the interest object at the center of the image frame. A readial basis function based neuro-fuz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013